Truncating the Platonic solids to create the Archimedean solids

.

     Symmetrically truncating the vertices of the regular Platonic solids creates most

.

of the semi-regular Archimedean solids.  This permits the symmetry of the latter to

.

be associated with the former in a straightforward manner.  For example the cube

.

and octahedron can be progressively truncated to yield the cuboctahedron. The

.

truncated_cube.gif (6380 bytes)

truncated_cube.gif (5624 bytes)

cuboctahedron.gif (5441 bytes)

truncated_octahedron.gif (6470 bytes)

octahedron.gif (5486 bytes)

arrowrightblk.GIF (88 bytes)

.

arrowrightblk.GIF (88 bytes)

.

arrowleftblk.gif (90 bytes)

.

arrowleftblk.gif (90 bytes)

Fig. 13a

Fig. 13b

Fig. 13c

Fig. 13d

Fig. 13e

Truncated cube

Truncated

Cuboctahedron

Truncated

Octahedron

in a cube

cube

octahedron

Required parts

8 large triangles

8 triangles 

   48 triangles

   8 triangles

6 large squares

6 squares

6 squares

12 pinges

24 rectangles

24 pinges

  84 pinges

24 right triangles (48 for 13a)

96 pinges (120 for 13a)

.
. .

Fig. 13 -   Truncating the cube and octahedron to make the cuboctahedron

.

truncated cube and the truncated octahedron are generated in the process.  Since

.

each vertex of the polyhedra are symmetrically sliced off the resulting polyhedra

retain the same symmetry elements as the original. 

.

page 10 of lesson

Exercise: Truncating the vertices of  which polyhedron produces the triangle

page 12 of lesson

faces of the cuboctahedron?  Which one produces the square's?  Why?

Back to Knowhere

Home page

Page 11     Geometry rules! - Symmetry association by truncation

 

home   sitemap   products   Polywood   .networks   contact us   Knowhere   3Doodlings